

UNIVERSITAS MATARAM

(University of Mataram)

FAKULTAS TEKNIK

(Faculty of Engineering)

PROGRAM STUDI TEKNIK INFORMATIKA

(Department of Informatics Engineering)

MODULE HANDBOOK DESCRIPTION

Big Data (K22B51)

Module designation	Big Data			
Semester(s) in which the module is taught	5 / fourth year			
Person responsible for the module	Dr.Eng I Gde Putu Wirarama Wedashwara Wirawan ST., MT.			
Language	Indonesian			
Relation to curriculum	Compulsory			
Teaching methods	Lectures, Discussions, Project			
Workload (incl. contact hours, self-study hours)	Contact Hours every week, each week of the 16 weeks/semester including Evaluation			
	 3 x 50 minutes lecturer/week 3 x 60 minutes class exercise/week Self Study hours = 120 minutes/week 			
	Total workload 340 minutes/week			
Credit points	3 (~ 3,2 ECTS)			
Required and recommended prerequisites for joining the module	Probability and Statistics (D18KK114) Database System (D18KB206)			

Module objectives/intende d learning outcomes	The main objective of Big Data is to learn about big data concepts and infrastructure, statistical analysis, processing flow and technical implementation of programming in big data environments such as Hadoop and spark. The courses are run on a project basis to train students to work together and be responsible for completing projects in the big data field, such as data crawling, visualisation, and preparation for the entire ETL (Extract Transform Load). Based on these main objectives, the application of big data courses have subject learning outcomes, namely: 1. Able to work together in groups and be responsible for their respective roles to complete big data tasks such as data crawling, visualization, preparation for the entire ETL (Extract Transform Load).
	 Able to explain big data concepts and infrastructure and run big data processing flows conceptually and technically in programming. Able to configure big data environments such as Hadoop and spark as well as implement programming involving statistical analysis.
Content	Big Data discusses big data concepts and infrastructure, statistical analysis, processing flow and technical implementation of programming in big data environments such as Hadoop and spark. The courses are run on a project basis to train students to work together and be responsible for completing projects in the big data field, such as data crawling, visualisation, and preparation for the entire ETL (Extract Transform Load).
Examination forms	Assignments, Quiz, Simulation, Project Based Assignments
Study and examination requirements	Assignments 25%, Quiz 25%, Project based assignments 50%

Reading list	1.	Zikopoulos, P., & Eaton, C. (2011). Understanding big data:
U		Analytics for enterprise class hadoop and streaming data.
		McGraw-Hill Osborne Media.
	2.	Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey.
		Mobile networks and applications, 19(2), 171-209.
	3.	Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining
		with big data. IEEE transactions on knowledge and data
		engineering, 26(1), 97-107.
	4.	McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., &
		Barton, D. (2012). Big data: the management revolution.
		Harvard business review. 90(10). 60-68.
	5.	Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C.
		(2018). Social media analytics-Challenges in topic
		discovery, data collection, and data preparation.
		International journal of information management, 39
		156-168.
	6.	Cattell, R. (2011). Scalable SOL and NoSOL data stores. Acm
	0.	Sigmod Record, 39(4), 12-27.
	7.	Van der Veen, J. S., Van der Waaii, B., & Meijer, R. J. (2012.
		lune). Sensor data storage performance: SOL or NoSOL
		nhysical or virtual in 2012 IEEE fifth international
		conference on cloud computing (np. 431-438) IEEE
	8	Isole R Imprich I Bizer C & Harth Δ (2010)
	0.	November) Denider: An open-source crawling framework
		for the Web of Linked Data. In Proceedings of the 2010
		International Conference on Posters & Demonstrations
		Track (Vol. 658 nn. 20-32)
	٥	$\begin{array}{cccc} \text{Hack (V01, 030, pp. 25-32).} \\ \text{Choose I (2001) Crawling the web: discovery and \\ \end{array}$
	9.	maintenance of large scale web data. Computer science
		Stanford University
	10	White T (2012) Hadoon: The definitive guide " O'Peilly
	10	Modia Inc."
	11	Meula, IIIC Mannar I. (2000). Bro hadaan, Anross
	11	Bathan S (2003). Pro Hadoop, Apress.
	12	components like Flume. Dig. Hive and lead in International
		components like Flume, Fig, five and Jaqi. In International
	10	Conference officioud, big data and trust (vol. 15).
	13	. POI, U. R. (2016). Big data analysis. Comparison of nadoop
		inapreduce, pig and nive. International Journal of
		Innovative Research in Science, Engineering and
	1.4	iecnnology, 5(6), 9687-93.
	14.	Drabas, T., & Lee, D. (2017). Learning PySpark. Packt
		Publishing Ltd.