

UNIVERSITAS MATARAM

(University of Mataram)

FAKULTAS TEKNIK

(Faculty of Engineering)
PROGRAM STUDI TEKNIK INFORMATIKA

(Department of Informatics Engineering)

MODULE HANDBOOK DESCRIPTION

Data Mining (P22B05)

Module designation	Data Mining
Semester(s) in which the module is taught	Elective Courses / fourth year
Person responsible for the module	Dr.Eng I Gde Putu Wirarama Wedashwara Wirawan ST., MT.
Language	Indonesian
Relation to curriculum	Compulsory
Teaching methods	Lectures, Discussions, Project
Workload (incl. contact hours, self-study hours)	Contact Hours every week, each week of the 16 weeks/semester including Evaluation • 2 x 50 minutes lecturer/week • 2 x 60 minutes class exercise/week • Solf Study hours = 120 minutes/week
	Total workload 340 minutes/week
Credit points	2 (~ 3,2 ECTS)
Required and recommended prerequisites for joining the module	Big Data

Module objectives/intende d learning outcomes	 The main objective of IoT application is to do an statistical analysis for the design of pre-processing requirements for feature selection and extraction data on numeric and text data, as well as the implementation of supervised processing, namely unsupervised classification, and regression, namely clustering, association rule mining, and skyline queries along with their evaluation using python and spark programming libraries. Problem-based courses to train students' analytical skills and independence in solving given problems. Based on these main objectives, the application of IoT courses have subject learning outcomes, namely: 1. Able to be responsible, creative, and independent in solving data mining problems. 2. Able to analyze using a statistical approach to design pre-processing requirements for feature selection and extraction data on numeric and text data. 3. Able to perform analysis and implementation of data mining in supervised processing, namely clustering, association rule mining, and skyline query, along with their evaluation using python and spark programming libraries.
Content	Data mining discusses statistical analysis for the design of pre-processing requirements for feature selection and extraction data on numeric and text data, as well as the implementation of supervised processing, namely unsupervised classification, and regression, namely clustering, association rule mining, and skyline queries along with their evaluation using python and spark programming libraries. Problem-based courses to train students' analytical skills and independence in solving given problems.
Examination forms	Assignments, Quiz, Simulation, Project Based Assignments
Study and examination requirements	Assignments 25%, Quiz 25%, Project based assignments 50%

Reading list	1. Rutkowski, L., Jaworski, M., & Duda, P. (2020). Stream data
	Cham Cwitzerland, Caringer
	Cham, Switzerland: Springer.
	2. Olson, D. L., & Lauhoff, G. (2019). Descriptive data mining.
	In Descriptive Data Mining (pp. 129-130). Springer, Singapore.
	3. Aggarwal, C. C. (2015). Data mining: the textbook. Springer.
	4. Gupta, G. K. (2014). Introduction to data mining with case
	studies. PHI Learning Pvt. Ltd.
	5. Xu, R., & Wunsch, D. (2008). Clustering (Vol. 10). John Wiley & Sons.
	6. Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm IEEE Access & 80716 80727
	7 Saxena A Prasad M Gunta A Bharill N Patel O P
	Tiwari A & Lin C T (2017) A review of clustering
	techniques and developments. Neurocomputing. 267, 664-681.
	8. Abdel-Basset, M., Mohamed, M., Smarandache, F., & Chang, V.
	(2018). Neutrosophic association rule mining algorithm for big
	data analysis. Symmetry, 10(4), 106.
	9. Zhang, C., & Zhang, S. (2003). Association rule mining: models and algorithms (Vol. 2307). Springer
	10. Haddache, M., Hadiali, A., & Azzoune, H. (2019, June).
	Reducing skyline query results: An approach based on fuzzy
	satisfaction of concepts. In International Conference on Flexible
	Query Answering Systems (pp. 191-202). Springer, Cham.
	11. Zong, C., Xia, R., & Zhang, J. (2021). Text Data Mining (pp.
	1-333). Springer Singapore.
	12. Bouveyron, C., Celeux, G., Murphy, T. B., & Raftery, A. E.
	(2019). Model-based clustering and classification for data
	science: with applications in R (Vol. 50). Cambridge University
	Press.