

UNIVERSITAS MATARAM

(University of Mataram)

FAKULTAS TEKNIK

(Faculty of Engineering)

PROGRAM STUDI TEKNIK INFORMATIKA

(Bachelor of Informatics Engineering)

MODULE HANDBOOK DESCRIPTION

Module designation	Natural Language Processing (P22A06)	
Semester(s) in which the module is taught	6 / third year	
Person responsible for the module	Dr. Eng. Budi Irmawati	
Language	Indonesian	
Relation to curriculum	Elective	
Teaching methods	simulation, group discussions and presentation, case-based problems, lectures	
Workload (incl. contact hours, self-study hours)	Contact hours every week, each week of the 16 weeks/semester including Evaluation • 2 x 50 minutes lecturer/week • 2 x 60 minutes class exercise/week • Self-study hours = 120 minutes/week Total workload 340 minutes/week	
Credit points	2 (~ 3.2 ECTS)	
Required and recommended prerequisites for joining the module	Discrete Mathematics, Basic programming skills (preferably in Python), Fundamental knowledge of probability and statistics, Understanding of linear algebra concepts	
	Recommended Prerequisites : Prior coursework in machine learning or data science, Familiarity with algorithm design and computational complexity	
Module objectives/ intended learning outcomes	1. Students are able use regular expression, normalize data, and calculate distance	PLO6: 20%
	2. Students are able to implement language model, PoS Tagging, and optionally vector embeddings.	PLO7: 30%

	3. Students are able to implement a parsing algorithm.	PLO8: 25%
	4. Students are able to classify, clustering data and	PLO8:
	implement machine translation	25%
Content	Natural Language Processing enable machines to interpret, understand, and generate human language in a meaningful way, explores methods to extract information from raw texts and combining additional data extracted as well from the structure of the texts (such as bag of word, language model, PoS tagging, dependency relation, and parsing).	
	The lessons are mostly given in group discussion as case based problems and in practical works.	
	At the end of the course, students are required to algorithms and models to extract insights, understand of and perform tasks such as translation or sentiment de It's an interdisciplinary field that leverages line computer science, and statistics to make sense of langu The course target is students have basic abilities with a processing techniques (cleaning, stemming, regular exp feature extraction, embedings, etc.) to work on compu linguistics tasks like sentiment analysis, parap summarization, machine translation, language generation Parsing and syntactic analysis, Semantic analysis (of meaning from text), Named entity recognition, set analysis, machine translation, and using machine learn deep learning models for language tasks	context, tection. guistics, age. any text ression, tational hrasing, ion, etc. deriving ntiment
Examination forms	Assignments, Quiz, Simulation, Problem solving	
Study and examination requirements	Coursework (40%): Regular assignments and lab exercises focused on p programming and problem-solving in NLP. Group Project (30%): A comprehensive project where students design, devel present an NLP solution addressing a real-world p Emphasis on innovation, collaboration, and te execution. Final Examination (30%): A combination of written and practical assessments theoretical understanding and applied skills. Clear,	lop, and roblem. echnical testing
	questions that require both conceptual explanatio coding proficiency.	ns and

Reading list	 Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python, 2015. <u>https://www.nltk.org/book/</u>
	 Daniel Jurafsky & James H. Martin, Speech and Language Processing 2nd Edition: An introduction to natural language processing, computational linguistics, and speech recognition, 2006. <u>https://www.cs.colorado.edu/~martin/slp.html</u> <u>NLP 100 Exercise 2020 (Rev 1)</u> <u>SRILM - The SRI Language Modeling Toolkit</u> <u>Moses</u> <u>GiZA++</u>
	Recommended Reading:
	1. Manning, C.D. & Schütze, H. Foundations of Statistical Natural Language Processing
	2. Goldberg, Y. Neural Network Methods for Natural Language Processing
	 Selected papers from leading conferences (e.g., ACL, EMNLP) to understand current research trends